
DROID-FF – THE ANDROID
FUZZING FRAMEWORK
TWITTER : @ANTOJOSEP007

GITHUB : @ANTOJOSEPH

@WHOAMI

• security engineer @ intel

• android security enthusiast

• speaker / trainer @ Hitb Amsterdam, brucon / hackinparis / blackhat /
nullcon / ground zero / c0c0n …

• when not hacking , you can see me travelling / djing / biking

DROID-FF : WHY ?

• attempts to solve fuzzing in mobile devices (* android)

• challenges in fuzzing :

• data – generation

• low powered devices

• crash logging

• crash triage

• exploitable or not ?

DROID-FF : APPROACH

• scripts written in python

• integrates with peach / pyzuff / radamsa

• custom crash logging

• custom crash triaging

• exploitable checks via gdb plugin J

• Fully automated

DROID-FF : DATA GENERATION

• two approaches
• dump fuzzing using radamsa / pyzuff

• generation based fuzzing using peach

• to counter checksums / magic numbers , custom fixers are added (for eg : dex repair for
fixing checksums in randomly mutated dex files (credits : github.com/anestisb)

• Grammar specified in pit files for peach

DROID-FF : FUZZING CAMPAIGN

• Runs the generated files against the target binary (for eg :
/system/xbin/dexdump crash1.dex)

• Makes use of adb_android python module to push generated files to device

• Makes use of adb shell command to execute the file against the target binary

• Adds a custom log to the android logcat so that we can track any files
responsible for the crash (for eg : log -p F -t CRASH_LOGGER SIGSEGV :
filename.dex)

DROID-FF : BUILDING ANDROID MODULES

• Navigate to the module directory (eg : /frameworks/av/cmd/stagefright/)

• Use the make helper

• source build/envsetup.sh

• edit (/frameworks/av/cmd/stagefright/Android.mk) and LOCAL_MODULE
=$BUILD_EXECUTABLE

• mma (/out/target/product/generic/system/xbin/dexdump)

DROID-FF : PROCESSING THE LOGS

• Pulls the adb logcat data from the device by saving it to a file and adb pull

• Parse the log file and look for crashes ("SIGSEGV", "SIGSEGV",
"SIGFPE","SIGILL”)

• If a crash is found , go up the lines until you find our custom crash file name
logger

• Queue the file responsible for the crash to double check

DROID-FF : CRASH VERIFICATION

• Runs the files responsible for crash against the target binary

• In the event of a crash , android system writes tombstone files (crashdump) to
the /data/tombstones directory .

• Backup the tombstone file along with the file responsible for crash

• Look for duplicate crashes by filtering the pc register value in the tombstone
file and only save unique crashes

DROID-FF : PROCESS TOMBSTONES

• Unique crashes needs to be mapped to relevant source code

• Using ndk-stack and addr2line utilities (android –ndk tools) , we map the
crash to a line in the android source code

• Ndk-stack :
• /path/to/file_with_symbols

• /path/to/tombstone_file

DROID-FF : PROCESS TOMBSTONE (2)

• Addr2line
• Address of the crash obtained by running ndk-stack in the target module

• "-C","-f", "-e", symbols_file_of_crash, address_of_the_crash

• Output gives the function and filename responsible for the crash

DROIF-FF : EXPLOITABLE ?

• Uses a gdb plugin ”exploitable “ which supports arm

• Looks at the state of the process when in crashes / unwinds stack etc and predicts
based on custom rules

• Runs using python gdb api ((gdb) source ../path/to/exploitable.py)

• Gdbserver for arm is pushed to the device

DROID-FF : EXPLOITABLE ? (2)

• root@goldfish: ./gdbserver :5039 /system/xbin/dexdump crash1.dex

• (gdb) set solib-absolute-prefixdb /path/to/symbols/

• (gdb) set solib-search-path /path/to/symbols/system/lib/

• (gdb) target remote : 5039

• (gdb) c

• Wait for process to crash or send it a kill sig (kill -9 pid)

• (gdb) exploitable

• (gdb) Stack Corruption , Exploitable : True , Description : blah blah blah

DROID-FF : ACHIEVEMENTS

• A lot of crashes , A LOOOOOOOTTTT !

• Fuzzing made easier and available for the masses

• Mostly automated

• Easily customizable

• Python J

• Source : github.com/antojoseph/droid-ff

DROID-FF : FUTURE IMPROVEMENTS

• Integration with ASAN

• Add support for automated gdb exploitability test and reporting

• Instrumented fuzzing ?

• Automate posting of exploitable crashes to android security group ? J

AFL FOR ANDROID

• Intel open sourced their implementation of afl on android

• Responsible for a lot of stagefright crashes

• Instrumented fuzzing helps in better coverage of all code paths

HONGFUZZ

• Runs within android

• Ported to android by (github.com/anestisb)

• Easy to get up and running with and very useful for quickly fuzzing binaries

• Built-in native crash logging mechanism (over-rides android debuggered)

THANKS

• @Ananth Srivastava – for all the packaging and suggestions

• @Sumanth Naropanth – for being a cool manager

• @jduck – for inspiration to write fuzzers and all the help from droidsec irc (those
series of stagefrights J)

• @anestisb – for those tools and articles on android fuzzing

• @Alexandru Blanda – for his work in MFF and being a good friend

• @Stephen Kyle - for his articles on fuzzin in ARM

• @flanker_hqd– BH Presentation on Fuzzing Parcels

HOW TO : DROID-FF

HOW TO : DROID-FF : STEP 1

• Python droid-ff.py
• Select the data –generator to use

• Options (bitflipper / radamsa / peach)

• On Error :
• (make sure you have the python requirements installed)

• pyZUFF

• adb_android

HOW TO : DROID-FF : STEP 2

• To Run the fuzzing campaign :
• Have android emulator up and running

• Android avd

• Start the emulator

• Test by checking “adb devices ” in the console

• Once running , run droif-ff.py and select option 2

HOW TO : DROID-FF : STEP 3

• Find crashes in your fuzzing campaign
• Make sure your emulator is still running and you can connect via adb

• Select step 3 in droid-ff.py

• This will pull the adb logs and search for any crashes and identify the files responsible

• On Error :

• Make sure you have all the required directories in the fuzzer folder , else moving files will fail

• Manually verify the logcat output and check if the script missed any crashes (very unlikely)

HOW TO : DROID-FF : STEP4

• To avoid false positives :
• All files which are identified to case a crash in the previous step is run again

• If crash happens , a resulting tombstone file is created

• We pull the tombstone file and identify the pc address of the crash

• We keep a dict of key value pairs of {pc , filename } and unique crashes are identified
and moved to a separate folder

HOW TO DROID-FF : STEP 5

• The crashes are resolved to a filename and method :
• Using ndk-stack tool , binary with symbols and the tombstone file , we can print the stack

frame

• Using addr2line , address from ndk-stack and binary with symbols , we resolve the crash
to a line and method in the sourcode

HOW TO : DROID-FF : STEP 6

• Check exploitability :
• Uses a gbd plugin which supports linux arm

• Loaded via .gdbinit

• Set symbol search path in gdb

• adb forward tcp:5039 tcp:5039

• gdbserver runs on the android device and listens on tcp port 5039

• gdb connects to gdb server and continues the execution of the binary until fault

• On fault signal , run exploitable and prints the result

WHAT NEXT ?

• Do a second round of manual analysis to make sure the bug is exploitable

• Reproduce the bug in different devices / architectures

• Report and exhaustive security bug report to the android security team

• If you are lucky , get your android – security bounty $$$

THANKS J

• Questions please …

